HM50464 Series

65536-word x 4-bit Dynamic Random Access Memory

- FEATURES
- Page mode capability
- Single 5V (± 10%)
- On chip substrate bias generator
- Low power: 350 mW active, 20 mW standby
- High speed: Access Time 120ns/150ns/200ns
- Output data controlled by CAS or OE
- TTL compatible
- 256 refresh cycles 4 ms
- 3 variations of refresh RAS only refresh

CAS before RAS refresh

Hidden refresh

■ ORDERING INFORMATION

Type No.	Access Time	Package
HM50464P-12	120ns	
HM50464P-15	150ns	300 mil 18 pin Plastic DIP
HM50464P-20	200ns	Plastic DIP
HM50464CP-12	120ns	
HM50464CP-15	150ns	18 pin PLCC
HM50464CP-20	200ns	

■ PIN ARRANGEMENT

HM50464P Series

OE []	18 Vss
I/O1 2	17 I/O4
I/O2 3	16 CAS
WE 4	15 I/O3
RAS 5	14 Ao
A1 6	13 A1
A2 7	12 A2
A3 8	11 A3
Vcc 🧿	10 A7
(Тор	View)

A A.	Address Inputs
CAS	Column Address Strobe
I/O1 - I/O4	Data In/Data Out
ŌĒ	Output Enable
RAS	Row Address Strobe
WE	Read/Write Input
VCC	Power (+5V)
VSS	Ground
A ₀ - A ₁ (Row)	Refresh Address Inputs

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit	
Voltage on any pin relative to V_{SS}	VT	-1 to +7	v	
Supply Voltage relative to VSS	VCC	-1 to +7	V	
Operating Temperature (Ambient)	Topr	0 to +70	*C	
Storage Temperature (Ambient)	Tstg	-55 to +125	°C	
Power Dissipation	P_T	1.0	W	
Short Circuit Output Current	Iout	50	mA	

RECOMMENDED DC OPERATING CONDITION ($Ta = 0 \text{ to } +70^{\circ}\text{C}$ **)**

Parameter	Symbol	min.	typ.	max.	unit
Supply Voltage	V _{CC}	4.5	5.0	5.5	V
Input High Voltage	V_{IH}	2.4	_	6.5	v
Input Low Voltage	V_{IL}	-1.0	_	0.8	v

Note) All voltage referenced to VSS.

■ DC ELECTRICAL CHARACTERISTICS ($Vcc = 5V \pm 10\%$, Vss = 0V, Ta = 0 to +70°C)

Parameter	Symbol	HM50464-12		HM50464-15		HM50464-20		T	T., .
, alametel	Symbol	min.	max.	min.	max.	min.	max.	Unit	Note
Operating Current (t _{RC} = min.)	I _{CC1}	_	83	-	70	T -	55	mA	1
Standby Current (RAS = V _{IH} . Dout = Disable)	I _{CC2}		4.5		4.5	1 -	4.5	mA	
Refresh Current (RAS only refresh, tRC = min.)	I _{CC3}	-	62	-	53	-	42	mA	-
Standby Current (RAS = V _{IH} , Dout = Enable)	Iccs	_	10		10	1	10	mA	1
Refresh Current (\overline{CAS} before \overline{RAS} refresh, t_{RC} = min.)	1006	-	69	-	58		45	mA	ı
Operating Current (Page mode, tpC = min.)	ICCT	_	57	-	48		37	mA	1
Input Leakage Current (0 < Vin < 7V)	I_{LI}	-10	10	-10	10	-10	10	μA	\vdash
Output Leakage Current (0 < Vout < 7V, Dout = Disable)	110	-10	10	-10	10	-10	10	μA	 -
Output High Voltage (fout = -5 mA)	V _{OH}	2.4	Vcc	2.4	V _{CC}	2.4	Vcc	v	
Output Low Voltage (Jout = 4.2 mA)	VOL	0	0.4	0	0.4	0	0.4	l v	\vdash

Note) 1. I_{CC} depends on output loading condition when the device is selected, I_{CC} max. is specified at the output open

■ CAPACITANCE ($V_{CC} = 5V \pm 10\%$, Ta = 25°C)

Para	meter	Symbol	typ.	max.	Unit	Note
Input Capacitance	Address	CI1	-	5	pF	1
RAS, CAS, WE, O	RAS, CAS, WE, OE	CI2	_	10	pF	1
Output Capacitance	Data In/Data Out	CI/O	_	10	pF	1, 2

Notes) 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.

2. $\overline{CAS} = V_{IH}$ to disable Dout.

■ ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(Vcc = 5V \pm 10\%, Vss = 0V, Ta = 0 \text{ to } +70^{\circ}C)$

Parameter	Symbol	HM50464-12		HM50464-15		HM50464-20		1	1
- Targine (c)	37111001	min.	max.	min.	max.	min.	max.	Unit	Note
Access Time from RAS	tRAC	-	120	_	150	-	200	ns	2, 3
Access Time from CAS	1CAC	-	60		75	-	100	ns	3,4
Output Buffer Turn-off Delay referenced to CAS	1 OFF1	_	30	-	40	_	50	ns	5
Transition Time (Rise and Fall)	t _T	3	50	3	50	3	50	ns	6
Random Read or Write Cycle Time	†RC	220	-	260	†	330	-	ns	Ť
RAS Precharge Time	IRP	90	-	100	†	120		ns	
RAS Pulse Width	IRAS	120	10000	150	10000	200	10000	ns	
CAS Pulse Width	1CAS	60	10000	75	10000	100	10000	ns	
RAS to CAS Delay Time	tRCD	25	60	25	75	30	100	ns	7
RAS Hold Time	!RSH	60		75	_	100	_	ns	
CAS Hold Time	[†] CSH	120	-	150	_	200		ns	
CAS to RAS Precharge Time	¹CRP	10		10	-	10	† <u> </u>	ns	\vdash
Row Address Set-up Time	IASR	0	_	0	 	0	 	ns	-
Row Address Hold Time	¹RAH	15	-	15	 	20	<u> </u>	ns	

(to be continued)

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

Parameter	Symbol	HM50	1464-12	HM5	0464-15	HM5	0464-20	Time	Note
Parameter	Symbol	min.	max.	min.	max.	min.	max.	Omit	Mote
Column Address Set-up Time	1ASC	0		0	1 -	0	1 -	ns	
Column Address Hold Time	1CAH	20	T -	25	-	30	T -	ns	
Column Address Hold Time referenced to RAS	IAR	80	_	100	-	130		ns	
Write Command Set-up Time	! WCS	0	T -	0		0	T -	ns	-8
Write Command Hold Time	1 WCH	40	-	45		55	-	ns	
Write Command Hold Time referenced to RAS	1 WCR	100	† - -	120	-	155	-	ns	
Write Command Pulse Width	t wp	40	-	45	T -	55	-	ns	
Write Command to RAS Lead Time	!RWL	40	T -	45	-	55	T -	ns	
Write Command to CAS Lead Time	1CWL	40	-	45	-	55	-	ns	
Data-in Set-up Time	t DS	0	-	0	-	0	1 -	ns	9
Data-in Hold Time	¹DH	40	-	45	-	55	-	ns	9
Data-in Hold Time referenced to RAS	† DHR	100	-	120	-	155	-	ns	$\overline{}$
Read Command Set-up Time	IRCS	0	I -	0		0	_	ns	
Read Command Hold Time referenced to CAS	[†] RCH	0	-	0	-	0	-	ns	
Read Command Hold Time referenced to RAS	trrh	10	Τ-	10	-	10	-	ns	
Refresh Period	IREF	-	4	-	4	T -	4	ms	
Read-Write Cycle Time	!RWC	305	-	360	-	450	-	ns	
CAS to WE Delay Time	ICWD	100	-	125	_	160	-	ns	8
RAS to WE Delay Time	!RWD	160	-	200	-	260	-	ns	8
CAS Precharge Time	† CPN	50	T -	60	-	80	-	ns	
CAS Set-up Time (CAS before RAS refresh)	¹CSR	10	-	10	T -	10	-	ns	T
CAS Hold Time (CAS before RAS refresh)	[‡] CHR	120	-	150	-	200	-	ns	
RAS Precharge to CAS Hold Time	1RPC	0	-	0	-	0	-	ns	
Access Time from OE	10AC	-	30	 -	35	ΙΞ.	45	ns	
Output Buffer Turn-off Delay referenced to OE	†OFF2	-	30	-	40] -	50	ns	
OE to Data-in Delay Time	topp	30	-	40	-	50	-	ns	
OE Hold Time referenced to WE	¹ OEH	25	T -	30	-	40	-	ns	
Page Mode Cycle Time	1PC	120	-	145	-	190	-	ns	
CAS Precharge Time (for Page-mode Cycle Only)	† CP	50	-	60	-	80	-	ns	
CAS Read-modify-write Cycle Time (Page-mode)	¹ PCM	205	<u> </u>	245	T -	310	T -	ns	I

Notes)

- 1. AC measurements assume $t_T = 5$ ns.
- 2. Assume that $t_{RCD} \leq t_{RCD}$ (max). If t_{RCD} is greater than the maximum recommended value shown in this table, trace exceeds the value shown.

 3. Measured with a load circuit equivalent to 2TTL
- loads and 100pF.
- 4. Assumes that $t_{RCD} \ge t_{RCD}$ (max). 5. t_{OFF} (max) is defined as the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition
- times are measured between V_{IH} and V_{IL} .

 7. Operation with the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified as a reference point only, if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively be tCAC.
- 8. twcs, tcwp and trwp are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: if $t_{WCS} \ge t_{WCS}$ (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if $t_{CWD} \ge t_{CWD}$ (min) and $t_{RWD} \ge t_{RWD}$ (min), the cycle is a read/write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 9. These parameters are referenced to CAS leading edge in early write cycles and to WE leading edge in delayed write or read-modify-write cycles.
- 10. An initial pause of 100 µs is required after power-up followed by a minimum of 8 initialization of cycles.
- 11. Minimum of 8 CAS before RAS refresh is required before using internal refresh counter.
- 12. In delayed write or read-modify-write cycles, OE must disable output buffers prior to applying data to the device.

TIMING WAVEFORMS

READ CYCLE

. EARLY WRITE CYCLE

READ MODIFY WRITE CYCLE

OE/

-toeh →

Note) [Don't care

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

• RAS ONLY REFRESH CYCLE

. HIDDEN REFRESH CYCLE

• CAS BEFORE RAS REFRESH CYCLE

COUNTER TEST

. PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

PAGE MODE READ MODIFY WRITE CYCLE

Find price and stock options from leading distributors for hm50464cp-12 on Findchips.com:

https://findchips.com/search/hm50464cp-12